Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition by

نویسندگان

  • Esmaeil Keyvanshokooh
  • Sarah M. Ryan
  • Jennifer Blackhurst
  • Mingyi Hong
چکیده

AbstractEnvironmental, social and economic concerns motivate the operation of closedloop supply chain networks (CLSCN) in many industries. We propose a novel profit maximization model for CLSCN design as a mixed-integer linear program in which there is flexibility in covering the proportions of demand satisfied and returns collected based on the firm's policies. Our major contribution is to develop a novel hybrid robust-stochastic programming (HRSP) approach to simultaneously model two different types of uncertainties by including stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and returns. Transportation cost scenarios are generated using a Latin Hypercube Sampling method and scenario reduction is applied to consolidate them. An accelerated stochastic Benders decomposition algorithm is proposed for solving this model. To speed up the convergence of this algorithm, valid inequalities are introduced to improve the quality of lower bound, and also a Pareto-optimal cut generation scheme is used to strengthen the Benders optimality cuts. Numerical studies are performed to verify our mathematical formulation and also demonstrate the benefits of the HRSP approach. The performance improvements achieved by the valid inequalities and Pareto-optimal cuts are demonstrated in randomly generated instances. Environmental, social and economic concerns motivate the operation of closedloop supply chain networks (CLSCN) in many industries. We propose a novel profit maximization model for CLSCN design as a mixed-integer linear program in which there is flexibility in covering the proportions of demand satisfied and returns collected based on the firm's policies. Our major contribution is to develop a novel hybrid robust-stochastic programming (HRSP) approach to simultaneously model two different types of uncertainties by including stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and returns. Transportation cost scenarios are generated using a Latin Hypercube Sampling method and scenario reduction is applied to consolidate them. An accelerated stochastic Benders decomposition algorithm is proposed for solving this model. To speed up the convergence of this algorithm, valid inequalities are introduced to improve the quality of lower bound, and also a Pareto-optimal cut generation scheme is used to strengthen the Benders optimality cuts. Numerical studies are performed to verify our mathematical formulation and also demonstrate the benefits of the HRSP approach. The performance improvements achieved by the valid inequalities and Pareto-optimal cuts are demonstrated in randomly generated instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty

In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...

متن کامل

Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition

Environmental, social and economic concerns motivate the operation of closed-loop supply chain networks (CLSCN) in many industries. We propose a novel profit maximization model for CLSCN design as a mixedinteger linear program inwhich there is flexibility in covering the proportions of demand satisfied and returns collected based on the firm’s policies. Our major contribution is to develop a no...

متن کامل

An Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method

In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...

متن کامل

A Collaborative Stochastic Closed-loop Supply Chain Network Design for Tire Industry

Recent papers in the concept of Supply Chain Network Design (SCND) have seen a rapid development in applying the stochastic models to get closer to real-world applications. Regaring the special characteristics of each product, the stracture of SCND varies. In tire industry, the recycling and remanufacturing of scraped tires lead to design a closed-loop supply chain. This paper proposes a two-st...

متن کامل

Sustainable closed-loop supply chain network design and operations planning considering human resource employment and training

Modeling and optimal solving of supply chain management problems lead to efficient decision making in strategic planning and supply chain operations, resulting in a competitive advantage. Today, with the planning of a sustainable supply chain, in addition to achieving economic goals, it is possible to meet social and environmental objectives and considerations. This research deal with sustainab...

متن کامل

An Inexact-Fuzzy-Stochastic Optimization Model for a Closed Loop Supply Chain Network Design Problem

The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest over the past decades. However, the uncertainties that are inherent in the network design and the complex interactions among various uncertain parameters are challenging the capabilities of the developed tools. The aim of this paper, therefore, is to propose a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015